Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration.

نویسندگان

  • Juliane Münch
  • Alvaro González-Rajal
  • José Luis de la Pompa
چکیده

Zebrafish have the capacity to regenerate several organs, including the heart and fins. Fin regeneration is epimorphic, involving the formation at the amputation plane of a mass of undifferentiated, proliferating mesenchymal progenitor-like cells, called blastema. This tissue provides all the cell types that form the fin, so that after damage or amputation the fin pattern and structure are fully restored. How blastema cells remain in this progenitor-like state is poorly understood. Here, we show that the Notch pathway plays an essential role during fin regeneration. Notch signalling is activated during blastema formation and remains active throughout the regeneration process. Chemical inhibition or morpholino-mediated knockdown of Notch signalling impairs fin regeneration via decreased proliferation accompanied by reduced expression of Notch target genes in the blastema. Conversely, overexpression of a constitutively active form of the Notch1 receptor (N1ICD) in the regenerating fin leads to increased proliferation and to the expansion of the blastema cell markers msxe and msxb, as well as increased expression of the proliferation regulator aldh1a2. This blastema expansion prevents regenerative fin outgrowth, as indicated by the reduction in differentiating osteoblasts and the inhibition of bone regeneration. We conclude that Notch signalling maintains blastema cells in a plastic, undifferentiated and proliferative state, an essential requirement for fin regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration.

Zebrafish can completely regenerate amputated fins via formation of a blastema, a proliferative mass of undifferentiated precursor cells. During regenerative growth, blastema proliferation must be tightly coordinated with cellular differentiation, but little is known about how this is achieved. Here, we show that Notch signaling is essential for maintenance of blastema cells in a proliferative ...

متن کامل

Macrophages modulate adult zebrafish tail fin regeneration

Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questio...

متن کامل

The art of fin regeneration in zebrafish

The zebrafish fin provides a valuable model to study the epimorphic type of regeneration, whereby the amputated part of the appendage is nearly perfectly replaced. To accomplish fin regeneration, two reciprocally interacting domains need to be established at the injury site, namely a wound epithelium and a blastema. The wound epithelium provides a supporting niche for the blastema, which contai...

متن کامل

Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration.

Adult teleosts rebuild amputated fins through a proliferation-dependent process called epimorphic regeneration, in which a blastema of cycling progenitor cells replaces the lost fin tissue. The genetic networks that control formation of blastema cells from formerly quiescent stump tissue and subsequent blastema function are still poorly understood. Here, we investigated the cellular and molecul...

متن کامل

The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 140 7  شماره 

صفحات  -

تاریخ انتشار 2013